Let A be a 3 x 3 real matrix such that det(A) = 6 and
adj A = \left( \begin{matrix} 1 & -1 & 2 \\ 5 & 7 & 1 \\ -1 & 1 & 1 \end{matrix} \right)
where adj A denotes the adjoint of A.
Then the trace of A equals ________________________ (round off to 2 decimal places)
adj (adj A) = \left( \begin{matrix} 6 & -6 & 12 \\ 3 & 3 & 0 \\ -15 & 9 & 12 \end{matrix} \right) ^T \\ \text{Since, A is a 3x3 matrix, we have,} \\ A = (A^{-1}) ^{-1}=\frac{adj(A^{-1})}{det(A^{-1})} = \frac{1}{det(A)}(adj (adj A)) \\ tr(A) = \frac{21}{6}= \frac{7}{2}=3.5
Leave a Reply