STB – 2019

  • Let X1, X2, . . . , Xn be independent and identically distributed random variables with a common density function 

f(x,θ) = e−(x−θ)I(x ≥ θ), where θ ∈ R. 

  1. Find the maximum likelihood estimator θn of θ based on X1, . . . , Xn
  2. Show that  is consistent for .
  3. For a suitable normalizing factor (to be specified by you), find a non-degenerate limiting distribution of .

Leave a Reply